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Analytical features of multidisciplinary optimization (MDO) problem formulations have signi� cant practical
consequences for the abilityofnonlinearprogrammingalgorithmsto solve the resulting computationaloptimization
problems reliably and ef� ciently. We explore this important but frequently overlooked fact using the notion of
disciplinary autonomy. Disciplinary autonomy is a desirable goal in formulating and solving MDO problems;
however, the resulting system optimizationproblems are frequently dif� cult to solve. We illustrate the implications
of MDO problem formulation for the tractability of the resulting design optimization problem by examining
a representative class of MDO problem formulations known as collaborative optimization. We also discuss an
alternative problem formulation, distributed analysis optimization, that yields a more tractable computational
optimization problem.

Nomenclature
Ai = disciplinary analysis i
ai = output of Ai

c j = interdisciplinaryconsistency constraints
Di = discipline i
f = system objective function
gi = design constraints for Di

li = design variables local to Di

min = minimize
s = design variables shared by disciplines
s.t. = subject to

Introduction

T HE analytical features of multidisciplinary optimization
(MDO) problem formulations have signi� cant consequences

for the ability of nonlinear programming algorithms to solve the
resulting computational optimization problems reliably and ef� -
ciently. This frequently overlooked fact is the theme of this and
related papers.1¡4

We illustrate the practical computationalimplicationsof problem
formulationusingcollaborativeoptimization(CO).5¡8 CO is charac-
terized by a distributed,bilevel structure,wherein a system problem
seeks to optimize system performance, whereas disciplinary prob-
lems attempt to minimize the interdisciplinaryinconsistency in the
variables and responses shared by the disciplines.

The ideas underlying CO are intuitively appealing and are based
on reasonablemotivations.Historicalevolutionof engineeringdisci-
plines and the complexityMDO suggest that disciplinaryautonomy
is a desirablegoal in formulatingand solvingMDO problems.Con-
sequently, is not surprising that bilevel approaches that maintain a
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measure of disciplinary autonomy have appeared and reappeared
in many forms over the past three decades. However, as we dis-
cuss, dif� culties necessarilyarise in solving the resulting computa-
tional optimization problems in theory and in practice. Dif� culties
in solving problems with CO and related methods have been ob-
served by a number of researchers, including Thareja and Haftka,9

Cormier et al.,10 Giesing and Barthelemy,11 and Kodiyalam.12 We
point out that they derive from the intrinsic mathematical proper-
ties of CO. Our line of inquiry is constructive because it clari� es
practical computational issues in MDO. The discussion is intended
for the engineeringaudience,althoughit containssome unavoidable
mathematical details required to explain what are ultimately issues
of a mathematical nature.

This line of analysishas immediate implicationsfor a practitioner
of MDO in that it describes and explains the obstacles one is likely
to encounter in applying conventionaloptimization methods to dis-
tributed formulations.The obstacles can be overcome in one of two
ways. One may wish to pursue the development of new optimiza-
tion algorithms, specially suited to solving distributed optimiza-
tion problems. In the absence of suitable algorithms, our analysis
would indicate when and why one would instead pursue alterna-
tive problem formulations. We give one example of an alternative
class of formulations that possesses many of the attractive features
of distributed optimization approaches, while avoiding their com-
putational dif� culties. We conjecture that an ideal MDO problem
formulation—one that manifests complete disciplinary autonomy
and leads to optimization problems that can be solved ef� ciently
and reliably—may not be possible. This observation emphasizes
the need for recognizing the tradeoffs among various features of
problem formulations and their computational consequences.

The analysispresented here supports a wider programwe call the
algorithmic perspective on MDO problem synthesis. It takes as its
starting point the abilities—and inabilities—of optimization algo-
rithms and seeks to formulate MDO problems so that the resulting
optimization problems can be solved reliably and ef� ciently, re-
� ecting the organizational and physical features of the application
to maximum extent without sacri� cing solubility by available al-
gorithms. The study of the analytical and computational aspects of
MDO problem formulations is central to this program.

The algorithmicperspectivestands in contrast to the conventional
approach to MDO we call the structural perspective, wherein the
primary considerations are the physical or organizational charac-
teristics of the system being designed. Concerns about the result-
ing optimization problem are secondary. Although successful for
many speci� c problems, the structural approach frequently leads
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to what several engineering researchers have described to us as
one-of-a-kindproblem solutions.That is, the choice of formulation
can give rise to computational problems that require great effort
in implementing and tuning the formulation and algorithms until a
satisfactory solution is attained. Even if the underlying ideas suf-
fer from serious de� ciencies, highly customized approaches can
usually be made to yield results, with suf� cient effort. However,
this means, in effect, developing a new, custom approach for each
application. Because successes of a particular method are reported,
whereas failures are usually not, the literature re� ects a level of
systematic success and effectiveness that can be misleading.

In this paper we support our observationswith analytical results,
illustrated by simple examples. The analysis is by no means ex-
haustive; we address only some of the analytical and computational
features of immediate practical import. Furthermore, a number of
interesting MDO problem formulations are not discussed here be-
cause we do not intend this paper as a survey. Instead, our intent
is to bring to light the practical impact of the analytical features of
MDO problem formulation on computational tractability of the re-
sulting design optimization problem. CO has been chosen because
it provides a particularly illuminating example.

Model Problem
For ease of exposition, we present our discussion for a two-

disciplinemodelproblem.The disciplinesmight representtheaeroe-
lastic interaction between aerodynamics D1 and structural analysis
D2 for a wing in steady-state � ow. The discussion is applicable to
MDO problems with an arbitrary number of disciplines, however.

Each disciplinary subsystem Di is based on a disciplinary anal-
ysis Ai that takes as its input a set of design variables .s; li / and
parameters derived from some or all of the outputs from the other
disciplinary analysis. The system design variables s are shared by
both disciplines.The disciplinarydesign variables l1 and l2 are local
to D1 and D2 , respectively.The outputs ai of each analysis include
all data passed to the other discipline as parameters as well as quan-
tities passed to design constraints and objectives. In our aeroelastic
example the information a2 , passed from structures to aerodynam-
ics, would include the wing shape. The informationa1, passed from
aerodynamics to structures, would include the aerodynamic loads.
The parameters derived from the analysis outputs a j , j 6D i of the
other discipline are not directly manipulated by the designer in Di .

The coupled multidisciplinary analysis system (MDA) re� ects
the physical requirement that a solution simultaneously satisfy A1

and A2. Given .s; l1; l2/, we write the MDA as the system

a1 D A1.s; l1; a2/ (1)

a2 D A2.s; l2; a1/ (2)

A1 and A2 are independentlysoluble: given .s; li ; a j /, we can com-
pute the output ai via Eq. (1) or (2). The MDA thus implicitly
de� nes a1 and a2 as functions of .s; l1; l2/: a1 D a1.s; l1; l2/ and
a2 D a2.s; l1; l2/.

The disciplinary design constraints g1.s; l1; a1/ and g2.s; l2; a2/
explicitly dependonly on a single discipline’s output. No constraint
involvesa1 and a2 jointly.This assumptionsimpli� es the exposition,
but is not essential.

A conventional approach to MDO problem formulation, com-
monly used in engineering design, is to impose an optimizer on the
MDA. Given the need to satisfy the MDA at a solution, this ap-
proach is natural. We call it the fully integrated optimization (FIO)
formulation and use it to give a canonical statement of the prob-
lem one wishes to solve. FIO is depicted in Fig. 1. Its mathematical
statement is

min
s;l1 ;l2

f [s; l1; l2; a1.s; l1; l2; /; a2.s; l1; l2/]

s:t: g1[s; l1; a1.s; l1; l2/] ¸ 0

g2[s; l2; a2.s; l1; l2/] ¸ 0 (3)

where theevaluationof theobjectiveandconstraintsrequiressolving
MDA (1) and (2) for the disciplinary analysis outputs a1.s; l1; l2/
and a2.s; l1; l2/.

Fig. 1 Fully integrated optimization.

Distributed Formulations
One of the main issues in MDO is problem synthesis, i.e., inte-

gration of the component disciplines into a tractable optimization
problem. One wishes to maintain the inherent disciplinary auton-
omy becauseorganizationaland computationalconsiderationsmake
it desirableto keep the transferof informationamong the disciplines
to a minimum. In practice, disciplinaryautonomycan be attained in
the following ways:

1) Some distributed methods attempt to avoid the necessity of
developing a separate MDA capability. The feasibility of all opti-
mization iterateswith respect to MDA (1) and (2) is the main bene� t
of FIO: even if optimization cannot continue to a solution because
of limited resources, the intermediate designs will be physically
realizable. However, an MDA capability is not usually developed
at the same time as the constituent disciplinary analyses. Devel-
oping an MDA capability together with the ability to compute de-
sign sensitivities that depend on the MDA presents a laborious and
time-consuming task. This drawback of FIO strongly motivates the
development of distributed formulations under study here.

2) FIO leads to the presence of the complete set of local dis-
ciplinary design variables li in the system problem (3). Some dis-
tributed formulationsuse subsystemoptimizationproblems to elim-
inate the localdesignvariablesfrom the systemproblem, thus hiding
the details of the subsystem design from the system problem.

Discrepancyfunctions13;14 suggest themselvesas a device for en-
abling disciplinary autonomy by distributing a coupled problem as
autonomous subproblems. The idea is as follows. MDO problems
are inherently coupled, with feedback among the disciplines in the
form of shared variables and responses. Solving a problem means
that a single set of shared variables and responses must satisfy the
disciplinaryanalysesand disciplinarydesign constraintssimultane-
ously at solutions. Partitioning a problem into a set of subproblems
usually means that at intermediatesolutionsan inconsistencyexists
between some or all of the shared variables and responses. This
inconsistency can be measured in many different ways as a scalar
function,with the actualformdependingon thequantityin question.
We call such scalarmeasuresof inconsistencydiscrepancyfunctions
(DF). Formulations based on DF attempt to remove the interdisci-
plinary inconsistencyat solutions, usually by requiring that the DF
bezero there.The resultingformulationslead to bilevelormultilevel
optimization problems.

Decomposition and information � ow in such bilevel approaches
are intended to mirror those present in engineeringorganizations.A
system coordination problem attempts to optimize the system ob-
jective. In the process of doing so, it issues design targets to the
component disciplines. In the subsystem problems the disciplines
must design to match these targets, i.e., try to reduce that disci-
pline’s DF to zero. This is one sense in which distributed bilevel
formulations can be viewed as respecting disciplinary autonomy.

DF-based formulations are also motivated by the wish to keep
the designs feasible with respect to the corresponding disciplinary
design constraints during optimization. This avoids problems with
designs that cause a breakdown of disciplinary analyses. However,
because the overall design does not, in general, satisfy the system
interdisciplinaryconsistency constraints, stopping in the middle of
optimization can yield a design that is not physically consistent.
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Approaches based on DF include optimization by linear decom-
position (OLD) or hierarchicaldecomposition.13¡19 CO is a related
approach; the underlying idea has a long history.13;14;19¡24 In both
approaches local design variables are eliminated from the system
problem and manipulated directly only in disciplinary problems.
Furthermore, CO dispenses with an explicit MDA. In OLD the dis-
ciplines are given the autonomous task of minimizing disciplinary
design infeasibilitywhile maintaining system consistency.The sys-
tem problem is to drive the design infeasibility to zero. In CO the
situation is reversed: the disciplines are given the autonomous task
of minimizing system inconsistencywhile maintaining disciplinary
design feasibility. In both approaches optimization of the system
objective, subject to interdisciplinary consistency, is performed in
the system problem.

Although bilevel approaches based on DF are intuitively appeal-
ing and reasonable, the resultingoptimizationproblemsare intrinsi-
cally dif� cult to solve by conventionaloptimizationmethods, as we
discuss presently. The observationson the differences in computa-
tional behavior of two formulations of the same problem illustrate
the importance of considering practical algorithmic consequences
of choosing a speci� c MDO problem formulation.

Collaborative Optimization
To formulate problem (3) along the lines of CO, we introduce

new disciplinarydesign variables¾1; ¾2. In the subsystemproblems
they serve as local copies of the shared variables s, thus relaxing
the coupling through s. CO is a bilevel optimization approach in
which the system coordination problem attempts to optimize the
system objective subject to N interdisciplinary consistency con-
straints C D fc1; : : : ; cN g:

min
s;t1 ;t2

f .s; t1; t2/; s:t: C.s; t1; t2/ D 0 (4)

Problem (4) controls the system design variables s and interdisci-
plinary couplingvariables .t1; t2/, which are issuedas design targets
for the disciplinary inputs and outputs a1 and a2 to the constituent
disciplines. In the subsystem problems the disciplines must design
to match these targetsas follows. In D1 , given .s; t1; t2/, we compute
N¾1.s; t1; t2/ and Nl1.s; t1; t2/ as solutions of the following minimiza-
tion problem in .¾1; l1/:

min
¾1;l1

1
2

£
k¾1 ¡ sk2 C ka1.¾1; l1; t2/ ¡ t1k2

¤

s:t: g1[¾1; l1; a1.¾1; l1; t2/] ¸ 0 (5)

where a1 is computed via the disciplinary analysis a1 D A1.¾1;
l1; t2/. An analogous problem for D2 de� nes solutions N¾2.s; t1; t2/
and Nl2.s; t1; t2/ of the problem

min
¾2;l2

1
2

£
k¾2 ¡ sk2 C ka2.¾2; l2; t1/ ¡ t2k2

¤

s:t: g2[¾2; l2; a2.¾2; l2; t1/] ¸ 0 (6)

with a2 computed via a2 D A2.¾2; l2; t1/.
The objectives in the subsystem problems are discrepancy func-

tions. The introductionof subsystem problems of the forms (5) and
(6) is a distinctivecharacteristicof CO. The problems can be solved
autonomously. In solving them, we eliminate li from the system
problem and decouple the calculation of the disciplinary analysis
outputs ai . Information from the solutions of problems (5) and (6)
is then used to de� ne the system consistency constraints ci .

In one instance of CO,5;6;8;20 the consistency condition drives to
zero theminimumvalueof theDF in problems(5) and (6). At the sys-
tem level the interdisciplinaryconsistency constraints C D .c1; c2/
are simply the optimal values of the objectives in problems (5)
and (6):

c1.s; t1; t2/ D 1
2

©
k N¾1.s; t1; t2/ ¡ sk2

C ka1[ N¾1.s; t1; t2/; Nl1.s; t1; t2/; t2] ¡ t1k2
ª

c2.s; t1; t2/ D 1
2

©
k N¾2.s; t1; t2/ ¡ sk2

C ka2[ N¾2.s; t1; t2/; Nl2.s; t1; t2/t1] ¡ t2k2
ª

(7)

where the bars over N¾1; N¾2; Nl1; Nl2 indicate that these valuesare the re-
sults of solving the subsystem problems for the given value of the
system variables. We call this version CO2 , where 2 refers to the
fact that the ci are sums of squares.

An alternative consistency condition gives rise to a second in-
stanceofCO (denotedCO1), where the systemvariablesarematched
directlywith their subsystemcounterpartscomputedin problems(5)
and (6). The consistency constraintsC D .c1; : : : ; c4/ are

c1.s; t1; t2/ D N¾1.s; t1; t2/ ¡ s

c2.s; t1; t2/ D a1[ N¾1.s; t1; t2/; Nl1.s; t1; t2/; t2] ¡ t1

c3.s; t1; t2/ D N¾2.s; t1; t2/ ¡ s

c4.s; t1; t2/ D a2[ N¾2.s; t1; t2/; Nl2.s; t1; t2/; t1] ¡ t2 (8)

Note that .c1; c2/ are associatedwith D1, and .c3; c4/ are associated
with D2.

In either approach a value of the system variables .s; t1; t2/ is
realizable for Di if the optimal value of the DF in the corresponding
disciplinarysubsystemproblem (5) or (6) is zero. Realizable values
of s; t1; t2 correspondto desirabledesigns: Di can exactlymatch the
system targets without violating the disciplinarydesign constraints.
In general, there are many realizable values of the system variables
for a given discipline. A point .s; t1; t2/ is feasible for the system
problem when it is realizable for all of the constituent disciplines.

Examples of Reformulation
Two examples illustrate the analysis of CO.2 The simplicity is

a conscious choice. When complex problems are used as the only
test of methodology,it is dif� cult to distinguishthe behaviorcaused
by the intrinsic properties of the method from those features caused
by the various aspects of the problem and implementation. Sim-
ple examples allow us to isolate the intrinsic properties of problem
formulations. Moreover, simple problems provide a lower bound
on the reliability of a solution technique: although it is clear that
MDO methods are not intendedfor very small and simple problems,
any practical optimization approach should be able to solve such
problems reliably. Experience with CO applied to more complex
problems is reported elsewhere.9;10;12;25

Examples (9) and (10) are trivially solved by conventional op-
timization methods. This feature removes the issue of the prob-
lem implementationcomplexity and isolates the intrinsicproperties
of problem formulations under consideration here, as well as their
algorithmic consequences.

Our � rst example is exceedingly simple:

min
s

f .s/ D s; s:t: 0 · s · 1 (9)

Our second example has a convex quadratic objective and linear
constraints:

min 1
2

£
a2

1.l1; l2/ C 10 a2
2.l1; l2/

¤

s:t: s C l1 · 1

¡s C l2 · ¡2 (10)

where .a1; a2/ solves 2a1 C a2 D l1 and a1 C 2a2 D l2.
To reformulate problem (9) along the lines of CO, we create two

“disciplines”associatedwith the constraintss ¸ 0 and s · 1, viewed
as two disciplinarydesign constraints.Given s, the subsystemprob-
lems are

min
¾1

1
2
k¾1 ¡ sk2; min

¾2

1
2
k¾2 ¡ sk2

s:t: ¾1 ¸ 0 s:t: ¾2 · 1 (11)

The solutions, as functions of s, are

N¾1.s/ D
»

0 if s · 0;
s if s ¸ 0

N¾2.s/ D
»

s if s · 1
1 if s ¸ 1 (12)
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The CO2 system problem is then

min
s

s

s:t: c1.s/ D 1
2
k N¾1.s/ ¡ sk2 D 0

c2.s/ D 1
2
k N¾2.s/ ¡ sk2 D 0 (13)

whereas the CO1 system problem is

min
s

s

s:t: c1.s/ D N¾1.s/ ¡ s D 0

c2.s/ D N¾2.s/ ¡ s D 0 (14)

Reformulating problem (10) along the lines of CO, we obtain the
system-level problem

min
s;t1;t2

1
2

¡
t 2
1 C 10 t 2

2

¢
; s:t: C.s; t1; t2/ D 0

which becomes CO2 if C D .c1; c2/ is de� ned as in Eqs. (7) and
CO1 if C D .c1; : : : ; c4/ is de� ned as in Eqs. (8). Given .s; t1; t2/,
the constrained optimal values N¾1.s; t1; t2/ and Nl1.s; t1; t2/ are com-
puted by solvingproblem (5) for D1 with the disciplinaryconstraint
¾1 C l1 · 1, where a1 solves the disciplinary analysis 2a1 C t2 D l1.
Similarly, for D2 we compute N¾2.s; t1; t2/ and Nl2.s; t1; t2/ via prob-
lem (6) with the constraint¡¾2 C l2 · ¡2, where a2 solves the dis-
ciplinary analysis t1 C 2a2 D l2 . The subsystem problem solutions
are

N¾1.s; t1; t2/ D s C 1
5 min[.¡s ¡ 2t1 ¡ t2 C 1/; 0]

Nl1.s; t1; t2/ D 2t1 C t2 C 4
5 min[.¡s ¡ 2t1 ¡ t2 C 1/; 0]

N¾2.s; t1; t2/ D s C 1
5 max[.¡s C t1 C 2t2 C 2/; 0]

Nl2.s; t1; t2/ D t1 C 2t2 ¡ 4
5 max[.¡s C t1 C 2t2 C 2/; 0] (15)

Analytical Features of CO
In this section we discuss and illustrate some of the more pro-

nounced analytical features of CO and their computational con-
sequences. A more detailed discussion can be found elsewhere.2

We believe that the analysis explains many of the reported com-
putational dif� culties.9;12;25 The features we discuss make it harder
for conventional algorithms to solve the CO system problem and
also degrade the ef� ciency with which the problems will be solved.
Moreover, bad things happen at good points: the dif� culties nec-
essarily arise at values of the system variables that are realizable
for individual disciplines and, more speci� cally, designs and dis-
ciplinary inputs and outputs that correspond to a consistent MDA.
This is an unavoidable consequence of the way CO eliminates li

from the system problem.

Breakdown of the Stationarity Conditions in CO2
The system problem in CO2 fails to satisfy the standard Karush–

Kuhn–Tucker (KKT) stationarity conditions for a constrained min-
imizer because, in general,Lagrange multipliersdo not exist for the
system problem. Example (9) illustrates this property.The gradients
of the system consistency constraints are

rc1.s/ D
»

s if s · 0;
0 if s ¸ 0 rc2.s/ D

»
0 if s · 1
s if s ¸ 1

The minimizer of the system problem (13) is s¤ D 0, and
rc1.s¤/ D rc2.s¤/ D 0.The KKT conditionsforproblem(13)would
require the existence of Lagrange multipliers ¸¤

1; ¸¤
2 such that

r f .s¤/ C ¸¤
1rc1.s¤/ C ¸¤

2rc2.s¤/ D 0

However, we have

r f .s¤/ C ¸¤
1rc1.s¤/ C ¸¤

2rc2.s¤/ D r f .s¤/ D 1

In general, the KKT necessaryconditionfor a point x¤ to be a (local)
minimizer of a generic equality constrained optimization problem
fminx f .x/jC.x/ D 0g is that C.x¤/ D 0 and there exists a vector of

Lagrange multipliers ¸¤ for which r f .x¤/ C rC .x¤/¸¤ D 0. If x¤
is feasible and rC.x¤/ D 0, then the KKT stationarity condition
holds if and only if r f .x¤/ D 0. Thus, if the constraint Jacobian
vanishesat x¤ the Lagrange multiplier rule will not hold at x¤, unless
x¤ is also an unconstrainedstationarypoint:r f .x¤/ D 0. In general,
this is not the case.

Unfortunately,this situationnecessarilyarises in the system prob-
lem of CO2. The system constraints are differentiable at system
feasible points; however, at values of the system variables that
are realizable for a given discipline the gradient of the CO2 sys-
tem constraints associated with that discipline vanishes. That is, if
ci .s; t1; t2/ D 0 then rci .s; t1; t2/ D 0. This means that the Jacobian
of the system constraints will drop rank whenever the system vari-
ablesbecome realizableforone or moreof the disciplines,which can
cause numerical algorithms to fail at realizable values of the system
variables. Another consequence is that the Jacobian of the system
equality constraints in CO2 vanishes at every feasible point of the
system problem. This, in turn, implies that Lagrange multipliers do
not exist, in general, for the system problem in CO2 .

The nonexistence of Lagrange multipliers manifests itself in a
number of practical dif� culties. For instance, solutions to the sys-
tem problem exist, but we cannot identify them, and this inability
to characterize solutions numerically via the KKT conditions has
unfortunate consequences for computation.Assumptions about the
validityof the KKT conditionsunderlie the ways in which optimiza-
tion algorithms compute steps, gauge progress, and make decisions
about termination, among other things. One practical feature is that
one could begin an optimizationalgorithmat or near a solution,but,
because the KKT conditions do not hold, the algorithm will move
away from the solution, leaving the feasible region, and return to it
only later.

A related feature is that algorithms that use augmented
Lagrangians or similar merit functions to decide whether to accept
an iterate can break down because, e.g., the penalty weights in the
problem merit function grow without bound.

Moreover, because the KKT conditions do not hold at solutions
of the system optimization problem, we have no way to gauge
the progress of a conventional optimization algorithm applied to
the system problem. Once the optimization algorithm terminates,
we cannot, say, look at the gradient of the Lagrangian to determine
whether we are close to a minimizer.

The breakdown of the KKT conditions in the system problem
is an inherent feature of CO2. The dif� culty is not caused by the
intrinsic geometry of the system or disciplinary feasible regions.
Rather, it lies in the representationof the feasible region in terms of
system constraints in CO2 . The vanishing of the Jacobian has been
observed previously,5 but its consequencesappear not to have been
fully appreciated.

Simple tests illustrate how the breakdown of the KKT con-
ditions in CO2 can impede and even thwart computational opti-
mization. Table 1 presents the behavior of a Sequential Quadratic
Programming (SQP) algorithm, the NPSOL26 package. (The use of

Table 1 Iteration history of NPSOL applied to the CO2 system
problem for problem (9) with s0 = 0:001 (columns 2, 3)

and s0 = ¡ 0:001 (columns 4, 5)

Iteration s Penalty s Penalty

0 1.000e¡03 0.0eC00 ¡1.000e¡03 0.0eC00
1 ¡9.990e¡01 4.2eC00 ¡1.000e¡00 1.0eC00
2 ¡9.847e¡01 5.7eC00 ¡9.857e¡01 1.4eC00
3 ¡8.282e¡01 7.4eC00 ¡8.290e¡01 1.9eC00
4 ¡4.142e¡01 2.7eC01 ¡4.145e¡01 6.9eC00
5 ¡3.430e¡01 5.9eC01 ¡3.432e¡01 1.5eC01
6 ¡1.718e¡01 4.0eC02 ¡1.716e¡01 1.0eC02
7 ¡1.436e¡01 8.2eC02 ¡1.434e¡01 2.1eC02
8 ¡7.251e¡02 5.4eC03 ¡7.170e¡02 1.4eC03
9 ¡6.076e¡02 1.1eC04 ¡5.992e¡02 2.8eC03
10 ¡3.203e¡02 6.5eC04 ¡2.996e¡02 1.9eC04
11 ¡2.717e¡02 1.2eC05 ¡2.503e¡02 3.9eC04
12 ¡1.727e¡02 5.1eC05 ¡1.252e¡02 2.6eC05
13 ¡1.442e¡02 1.9eC06 ¡1.046e¡02 5.3eC05
14 ¡1.414e¡02 4.7eC06 ¡5.230e¡03 3.5eC06
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names of commercial software in this paper is for accurate reporting
and does not constitute an of� cial endorsement, either expressedor
implied, of such products by NASA or ICASE.)

The solution is s¤ D 0. The initial guesses are s0 D 0:001, which is
close to s¤ and also feasible with respect to the system constraints,
and s0 D ¡0.001, which is also near s¤ but slightly infeasible.

When we start at s0 D 0:001, because the system constraintsvan-
ish in the interior of the feasible region 0 · s · 1, the problem ap-
pears to be unconstrainedat s0, and so we immediately take a large
step that producess1 violating the designconstraints.We then spend
the remainder of the iterations working our way back towards fea-
sibility.

Note the column labeled “Penalty.” It holds the penalty weights
in the augmented Lagrangian used by NPSOL as a merit function
to gauge progress. The large values of the penalty weight re� ect
the nonexistence of Lagrange multipliers for the system problem;
the algorithm is compensating for the system constraint Jacobian
vanishingby increasingthe penalty parameter (in principle,without
bound as it approaches the solution).

The behavior of NPSOL is even more striking for the CO2

formulation of problem (10). The solution to the strictly con-
vex original problem is unique. From some starting points [e.g.,
.s; t1; t2/ D .1; 1; 1/] NPSOL applied to the CO2 system problem
� nds the optimal solution:

s D 1:6363; t1 D ¡0:3030; t2 D ¡0:0303

N¾1.s; t1; t2/ D N¾2.s; t1; t2/ D s

Nl1.s; t1; t2/ D ¡0:6363; Nl2.s; t1; t2/ D ¡0:3636

a1.s; t1; t2/ D t1; a2.s; t1; t2/ D t2 (16)

with the associatedoptimal value function of 5:05 £ 10¡2 , although
at a considerablygreater computationalcost (several hundred disci-
plinary analyses) than that of the solution of FIO. (In the CO2 tests
described,we compute system sensitivitiesvia postoptimalitysensi-
tivityanalysisof solutionsof thedisciplinaryproblems,as onemight
in practical application of CO2 , while the sensitivities used inside
the disciplinary subproblems are computed analytically.) None of
the iterates generated in the system problem are realizable for either
discipline. This nonrealizability is actually the favorable situation
from theperspectiveof applyinga numericaloptimizationalgorithm
to the CO2 system problem. However, intermediate designs do not
satisfy the physical constraints.

The worst behavior is observed when starting from values of
the system variables that are feasible with respect to the system
constraints (which is at odds with what one would hope for). For
instance, if we start at .s; t1; t2/ D .¡3; ¡3; ¡3/ NPSOL terminates
after a few system iterations (and a cost of over 200 analyses for
each discipline) at

s D ¡2:806; t1 D ¡5:658; t2 D 0:301 (17)

with the associated objective value of 16.46. The � nal system vari-
ables (and all intermediate iterates) satisfy the system consistency
constraints, which is the adverse situation in CO because the com-
puted Jacobiansat this point are singular, and this causes NPSOL to
fail. The singularityis re� ected in the � nal estimateof ¡1:67 £ 1010

for the Lagrangemultiplierassociatedwith the system constraintc1.
Starting much closer to the solution, but still feasible with re-

spect to the system constraints,we may fail to converge to the solu-
tion, e.g., when started from .s; t1; t2/ D .1:63; ¡0:3333; ¡0:0333/,
NPSOL halts, unable to make further progress, at a feasible value
of the system variables with an objective of 6:10£ 10¡2, over 20%
greater than the optimal value and only a slight improvement on an
initial objective value of 6:11 £ 10¡2 .

As already noted, because the KKT conditions do not hold at
solutionsof the system problemwe cannot reliablyuse conventional
metrics to determinewhether putative answers are nearly stationary
and thus close to a solution.For instance, if we start with the system
values .s; t1; t2/ D .1:63; ¡0:302; ¡0:302/ we terminate at a point
that appears to NPSOL to be a KKT point: It is feasible, and the

projection of the objective gradient onto the linearization of the
active constraints is small in magnitude. However, the Jacobian is
nearlyzero,and so small errors in computingthe systemsensitivities
make the Jacobian mostly noise and the projection is meaningless.

The examples illustrate a transformationof simple, smooth, con-
vex optimization problems with small numbers of variables into
problems that are dif� cult to solve. Moreover, the analytical rea-
sons for the computational dif� culties are inherent in the transfor-
mation, and so they will not disappear for problems of greater size
or complexity.

Breakdown of the Stationarity Conditions in CO1
CO1 is motivated by the need to alleviate the performance dif� -

culties of CO2;5 but its use presents its own dif� culties. In partic-
ular, the derivatives of the CO1 system constraints associated with
a given discipline are necessarily discontinuousat the boundary of
the feasible region for that discipline.

For instance, the system constraints for (9) are

c1.s/ D
»

¡s if s · 0;
0 if s ¸ 0

c2.s/ D
»

0 if s · 1
1 ¡ s if s ¸ 1

both of which have discontinuousderivatives: the � rst at s D 0, and
the second at s D 1. These points correspond to the boundaries of
the disciplinary feasible regions fs j s ¸ 0g and fs j s · 1g.

A similar lack of differentiabilitycan be seen in the reformulation
of problem (10). The solutions of the disciplinary subproblems are
given in Eqs. (15); the presence of the min and max terms makes
these solutions nondifferentiable at values of the system variables
along the boundary of the realizable sets for each discipline.

The discontinuityof the system derivatives is a general feature of
CO1 and is not peculiar to examples (9) and (10). Each subsystem
problem (5) and (6) minimizes the distance from the disciplinary
feasibleregion to the targetvaluesof the system designand coupling
variables.For target values of the system variablescorrespondingto
designsat the boundaryof a disciplinaryfeasibleregion,the solution
of the corresponding disciplinary optimization problem undergoes
an abruptandnondifferentiablechange.Moreover,thisdiscontinuity
of the derivativeswill, in general, occur at the solution to the system
problem because at least one disciplinary design constraint will be
bindingat the solution,in general.That is, we can expect the solution
of the system problem to be on the boundaryof one (or more) of the
feasible regions for the individualdisciplines,and at such points the
CO1 constraints have discontinuousderivatives.

Example (10) demonstrates this effect. NPSOL � nds the
solution in four to � ve iterations, regardless of the starting
point. NPSOL applied to the CO1 reformulation, on the other
hand, behaves erratically. If we start from the initial point
.s; t1; t2/ D .1:63; ¡0:302; ¡0:0302/, which is close to the exact so-
lution, .1:63; ¡0:30; ¡0:03/, NPSOL � nds the solution at a cost of
about 50 disciplinary optimization problems for each discipline. If
we start at the point .s; t1; t2/ D .¡1; ¡1; ¡1/, NPSOL terminates,
unable to make further progress, at

s D ¡0:9969; t1 D ¡1:4640; t2 D ¡0:0689

N¾1.s; t1; t2/ D N¾2.s; t1; t2/ D s

Nl1.s; t1; t2/ D ¡1:6018; Nl2.s; t1; t2/ D ¡2:9969

a1.s; t1; t2/ D t1; a2.s; t1; t2/ D t2

This design satis� es the system constraintsbut has an associatedob-
jective value of 1.096. (The optimalobjectivevalue is 5:05 £ 10¡2 .)
The associated disciplinary design variables for D2 also lie on the
boundaryof the disciplinary feasible region (because s C Nl2 D ¡ 2),
and so we encounter the discontinuity in the constraint Jacobian.
Examination of the � nite difference estimate of the Jacobian com-
puted by NPSOL at this point reveals that the Jacobian is highly
inaccurate.

Starting from .s; t1; t2/ D .0; 0; 0/, NPSOL approaches but does
not succeed in � nding the correct answer of the original problem.
We terminated this run after 500 system iterationswith an objective
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that was 2:7 times greater than the optimalvalue, at a cost of solving
over 3000 disciplinary optimization problems for each discipline.

Additional Nonsmoothness
When the set of disciplinary design constraints binding at the

solutionof the subsystemproblems(5) and (6) changesas a function
of the system targets .s; t1; t2/, there may be a discontinuity in the
derivative of the system constraints for both CO1 and CO2. This
dif� culty is a well-knownphenomenonthat arises in the dependence
of solutions of optimization problems on parameters and has been
noted in connection with bilevel approaches to MDO.5;16;27;28 The
discontinuityof the constraintJacobian in CO1 is one manifestation
of this phenomenon, in fact.

There is also potential for multiple local solutions of the sub-
system problems (5) and (6). The computed solutions may fail to
depend continuously on the system targets .s; t1; t2/, and it is not
clear how to ensure that one computes only a continuous branch of
local minimizers to the subsystem problems.

We do not illustratethese two dif� cultieswith examples.They are
widelyknown andmay ormay notoccur,dependingon theparticular
problem and the solution algorithms. The characteristicsdescribed
in the preceding sections,on the other hand, are intrinsic to CO and
may occur even if the original problem is perfectly well-behaved.

Overdetermined System-Level Constraints
In a typical equality constrained minimization problem there are

fewer equality constraints than optimization variables, i.e., the de-
grees of freedom in searchingfor a problem solutionoutnumber the
binding constraints. Both CO1 and CO2 can lead to system prob-
lems thathavemore equalityconstraintsthan optimizationvariables,
with CO1 typically leading to more constraints than does CO2 . Ex-
ample (9) illustrates this: the system problem has a single variable
but two equality constraints.

Although the system equality constraints are consistent inso-
far as they are satis� ed at any multidisciplinary consistent design
.s; t1; t2/, away from the solutionthe overdeterminedconstraintscan
cause trouble for standard optimizationalgorithms. For instance, in
SQP the system constraints are linearized. Because there may be
many more constraints than unknowns, the resulting linear system
can appear to be overdeterminedand without solution, leading to an
infeasibleSQP subproblem.This, in turn, can lead the optimization
algorithmto wrongly conclude that the system problemis infeasible
and to terminate without having founda solution.We haveobserved
this behavior in practice.

In CO2 one can try to avoid this problem by summing the con-
straints from different disciplines into a single nonlinear equality
constraint. In CO1 this remedy does not apply.

Increased Nonlinearity of the Transformed Problem
CO transforms originally smooth problems into nonsmooth ones

with a higher degree of nonlinearity.For example, the original prob-
lem (9) is linear, whereas the resulting CO system and subsys-
tem problems are nonlinear. In CO2 the system problem involves
piecewise quadratic constraints, whereas in CO1 the system con-
straints are not continuously differentiable. The increased nonlin-
earity arises from the elimination of the local, disciplinary design
variables via the disciplinary optimization subproblems.

As a general rule in nonlinear programming, it is important not
to increase nonlinearity or introduce other structural complications
when transforming problems.29;30 For instance, practical optimiza-
tion algorithms are often based on successive linearizations. Lin-
earization is exact for linear problems, which allows algorithms to
take advantageof this special structure.The CO reformulationdoes
not preserve linearity in the system constraints. The practical dif-
� culty of solving increasinglynonlinear system problems in CO is
noted in computational experiments.10

Addressing Computational Dif� culties
As we have seen, the natureof CO can make it dif� cult for numer-

ical optimizationalgorithms to arrive at realizable, interdisciplinary
consistentdesigns.We can attempt to address the dif� cultiesvia one
of several relaxations. All relaxations, in effect, are accomplished
by staying away from realizable designs.

Table 2 Results of relaxing the CO2 constraints
for problem (10), starting at ( ¡ 3; ¡ 3; ¡ 3) (columns 2, 3)

and (1; 1; 1) (columns 4, 5)a

" f¤ KKT? f¤ KKT?

10¡1 4.75 No 1:62 £ 10¡20 Yes
10¡2 4.79 No 6:82 £ 10¡3 Yes
10¡3 4.79 No 3:23 £ 10¡2 Yes
10¡4 4.79 No 4:43 £ 10¡2 Yes
10¡5 4.79 No 4:85 £ 10¡2 Yes
10¡6 4.79 No 4:99 £ 10¡2 Yes

aThe � nal objective is f¤ . “KKT?” indicates whether the computed solution
is a KKT point for the relaxed problem.

Relaxation of System-Level Constraints
One relaxationis to treat the system interdisciplinaryconsistency

constraints as inequalities rather than strict equalities.10;12 Toler-
ances on those inequalities should be as loose as possible to pre-
vent breakdown of numerical optimization algorithms. At the same
time one must continue to impose as tight a tolerance as possible
on the convergence of the subsystem problems so that the system
constraints and their sensitivities are properly evaluated.

This approach has limitations. If the system equality constraints
are not satis� ed, the system variables correspond to a design that is
not physicallyconsistent (because the multidisciplinaryanalysis re-
lations are not satis� ed) and that also violates the design constraints
of one or more disciplines.

Furthermore, this relaxation is not guaranteed to relieve the com-
putational dif� culties or to lead to designs that are nearly optimal.
This is illustratedby the CO2 formulationof problem(10). We relax
the system constraints to be

c1.s; t1; t2/ · "; c2.s; t1; t2/ · "

for " > 0. The relaxed system problem is strictly convex and has a
unique minimizer.

First suppose we begin at .s; t1; t2/ D .¡3; ¡3; ¡3/, which led
to the false solution (17). The results for different values of " are
reported in the second and third columns of Table 2. In all cases
NPSOL fails to � nd a legitimate solution for the relaxed system
problem,even though the relaxedprogramis convex.The algorithm
is undoneby the singularityof the constraintJacobianat feasibleand
realizable values of the system variables (i.e., rows of the Jacobian
vanish and/or become linearly dependent).

On the other hand, if we repeat the same experiment starting
at .s; t1; t2/ D .1; 1; 1/, which allowed us to � nd the correct solu-
tion (16), we encounter another issue. The results are summarized
in the fourthand � fth columnsof Table 2. This time the relaxed con-
straints allow NPSOL to � nd objective values that are signi� cantly
better than the true value, 5:05 £ 10¡2 .

Whether such deviations are acceptable in a realistic problem de-
pendson theapplication.If the objectivefunctionis a physicalvalue,
such as range of an aircraft, the deviation can be signi� cant. By re-
laxing the system consistency tolerances, we are now sometimes
able to solve the wrong problem more easily.

As this examplemakes clear, relaxing the systemconstraintsdoes
not necessarily repair CO2 and can introduce another dif� culty. It
is not clear that there is an ideal relaxed tolerance for the system
constraints that allows one to solve the problem while not distorting
the solution to unacceptable levels. Furthermore, one would expect
this sensitivityto relaxationto be greater in more complexproblems,
as computationaltestsdemonstrate.10 In general,one cannotknow, a
priori, the effect of such relaxationson the optimal solutionbecause
such knowledgewould requirea perturbationanalysisat the optimal
solution.

In our simple tests we varied the tolerances parametrically. In
practical engineering problems users may have a physics-based or
an engineering-based idea of acceptable variations in the design
variables,objectives, or constraints.For example, variationsof 1 kg
may beacceptablein thegross liftoffweight for an aircraft.However,
in order to translate an acceptable variation in a physical quantity
to an acceptable tolerance for infeasibilityof the system constraints
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one would need an estimate of the associated Lagrange multipliers
at an optimal solution, which is not available a priori.

Relaxation via Response Surface Methodology
Response surface methodology (RSM) has been proposed as

another approach to relaxing CO.31¡33 In one technique the
disciplinary analyses serve to build response surfaces that replace
the analyses as function evaluators in the subproblems. This is a
conventional use of RSM, and it does not alleviate the analytical
dif� culties of CO: the optimization problem structure remains un-
changed (although the additionaluncertaintyof the quality of RSM
approximation now contributes to the formulation).

The second approach uses RSM to build response surfaces that
approximate the DF. A detailed analysisof this approach would de-
pend both on the problem and on the speci� c type of data � tting
surfaces used. As we are dealing with the fundamental CO formu-
lation in this paper, such an analysis is not in its scope. However,
the conceptualdif� culty of the approach can be summarized as fol-
lows. Although responsesurfacesdo ease the solutionof the system
problem by virtue of distancing the problem from the original CO
formulation, it then becomes dif� cult to say what problem we are
actuallysolving.In CO the use of responsesurfaces is mainly aimed
at avoidingdif� cultieswith CO, not dif� cultieswith the MDO prob-
lem itself.

Alternative Optimization Algorithms
In this work we have relied on SQP algorithms as the means of

solvingthe CO system problembecauseSQP methodsare generally
the most ef� cient for equality constrainedoptimization.As we have
shown, CO has analytical features that hinder the successful opera-
tion of SQP algorithms. In particular, the singularity of the system
constraintJacobiancauses dif� culty for SQP algorithms.Moreover,
projection into the null space of the system constraint Jacobians,on
which SQP methods rely, is untenable and causes erratic computa-
tional behavior.

TharejaandHaftka9 appliedbotha feasibledirectionanda penalty
function algorithm to a version of CO2 . They also found that the
designs at which their algorithms terminated were highly variable
and very sensitive to the choice of parameters in the optimization
algorithms. For the very simple problems presented here quadratic
penaltymethodsapplied to the CO system problemyield reasonably
reliable, but not ef� cient, solutions.

Alternative: Distributed Analysis
We can formulate the MDO problem in a way that respects the

requirements of conventional nonlinear programming analysis and
algorithms and avoids the analytical dif� culties of the bilevel ap-
proacheswe havediscussed.We call this approachDistributedAnal-
ysis Optimization (DAO). Instances of this class of formulations
have appeared previously.34¡36

DAO treats the implicit interdisciplinaryconsistency constraints
in the MDA as explicit equality constraintsin the optimizationprob-
lem. FIO becomes

min
s;l1;l2 ;t1;t2

f .s; t1; t2/

s:t: g1.s; l1; t1/ ¸ 0; t1 D a1.s; l1; t2/

g2.s; l2; t2/ ¸ 0; t2 D a2.s; l1; t1/

where a1.s; l1; t2/ D A1.s; l1; t2/, and a2.s; l2; t1/ D A2.s; l2; t1/.
DAO enjoys a measure of disciplinary autonomy in that the dis-
ciplinary analyses can be performed independently.Details may be
elsewhere.3;4

The DAO formulation has the same smoothness and stability
properties as FIO. There is no dif� culty with Lagrange multipliers
or nonsmoothness. Because the analytical properties of DAO are
the same as those of FIO, performance of optimization algorithms
applied to DAO will not suffer as a consequenceof reformulation.

A tradeoff in DAO and CO is in the treatment of local design
variables. The DAO system problem operates on the entire set of
design variables, while the local variables are absent from the CO

system problem. To address this limitation in DAO, one needs to
take advantageof the block structure inducedby the disciplines.On
the other hand, the same computationalelements (e.g., disciplinary
analyses and sensitivities) are needed to implement FIO, DAO,
and CO.

Lessons Learned
We have shown that CO gives rise to nonlinear programming

problems that are dif� cult to solve by conventional optimization
algorithms.The dif� culty is caused not by intrinsicpropertiesof the
original MDO problem, but rather by the bilevel representation in
CO. As computationalexperiencesuggests,10;12 if a CO formulation
can be solved at all it is unlikely that it will be solved quickly.
Depending on the application, the lack of ef� ciency may � gure
in selecting a problem formulation. Requirements for inclusion of
expensive, high-� delity analyses can preclude the use of CO in a
practical environment.11 We comment on additional considerations
that should assist a user in choosing a problem formulation.

Robustness
The conceptof robustnessin nonlinearprogramminghas two ma-

jor components. First, it denotes the ability of an algorithm to � nd
an answer, starting from an arbitrary initial point. Second, a robust
algorithmensures that the answer found is correct and, if not, termi-
nates with an informative message. The second feature is, arguably,
by far the more important of the two, and it relies on the availability
of tractable stationarity conditions. CO formulations are not well-
posed from the perspectiveof conventionalnonlinearprogramming
because the system problems do not satisfy the standard optimality
conditions.

An algorithm applied to the system problem in CO cannot be
expectedto exhibitrobustbehavior.Our analysisandexamplesshow
that CO, when started at or near solutions, will generally leave the
region of feasibledesigns.The lack of a veri� able stoppingcriterion
for CO also explains the tendency of NLP software to halt at points
that are not solutions because progress cannot be made. To provide
a reliable stopping criterion in terms of FIO, one would have to
implement FIO, which would defeat the purpose of implementing
CO in the � rst place. The same reasoning also prevents uses of a
hybrid approach, e.g., CO combined with FIO.

We have also shown that attempts to relax CO may not alleviate
the computationaldif� culties. Relaxation may not make it possible
to � nd the solution reliably and can also lead to answers that appear
signi� cantly better than the correct solution but violate the physical
consistency of the MDA and violate disciplinary constraints.

These features add up to the most serious drawback of CO—the
lack of robustness in using conventional nonlinear programming
algorithms.Again, this is causedby thenatureof the systemproblem
in CO, not by the nature of the original physical problem nor by
de� ciencies of standard optimization algorithms.

The use of quadratic penalty methods can be more robust (it was
for the very simple problems presented here) but not ef� cient.

Dimensionality of the System Problem
Because the local designvariablesare eliminatedfrom the system

problem in CO, both the system and the subsystem problems have
a reduced number of variables, compared to the total set of design
variables.However, this reduction is achievedat the price of system
problems that are dif� cult to solve.

Ease of Implementation and Execution
When a problem formulation requires an MDA capability, the

effort is expendednot just in implementingthe MDA, but also during
the execution of MDA because the processing of the disciplinary
inputs may require extensive human intervention. CO is claimed
to ease problem implementation and execution because an explicit
MDA capability is not required. We believe this claim has not been
proven satisfactorily as yet.

On the positive side, local disciplinary variables need not be
treated as optimization variables at the system level. On the other
hand, althoughMDA is not implemented in CO the � ow of informa-
tion among the disciplines still remains. That is, in our example of
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aerostructural interaction structures still require input from aerody-
namics, and conversely.This data exchangeoccupiesa large portion
of the implementationeffort (regardlessof the problemformulation)
and adds to the execution effort. Because, typically, CO2 would re-
quire many iterations to attain some level of convergence, human
intervention to handle interdisciplinaryinputs can be signi� cant.

Moreover,becauseof the delinquentnatureof the systemproblem
in CO much time can be expended on � ne tuning both the problem
formulation and the optimization algorithm to produce answers.10

For small test problems we found that implementing CO was more
laboriousthan implementingFIO or DAO; however, small problems
do not provide a fair test of the necessary implementation effort.
Observationson the effort required to implement CO for more real-
istic problems can be found elsewhere.10 This points to the need for
carefulmeasurementof labor expendedon variousparts of the prob-
lem implementationin MDO: the modeling, the problem statement,
the optimization.Moreover, careful comparison must be made with
the corresponding time expenditureswhen using, say, the standard
formulation. Until such accounting is done on a realistic problem,
substantiating claims on the increased ease of implementation will
be dif� cult.

Conclusions
Bilevel approaches suggest themselves naturally as a decompo-

sition strategy for large problems, and researchers have repeatedly
turnedto them in an attempt to dealwith engineeringsystems in a de-
centralizedfashion.Although computationalef� ciency is one of the
goals of bilevel approachesto the optimizationof complex, coupled
systems, the computationalinef� ciency that often results in practice
is viewed, � rst, as a feature that will be ameliorated by increases in
available computing power and, second, as less signi� cant than the
conjectured bene� ts, such as ease of problem synthesis and imple-
mentation, disciplinaryautonomy,or a problem decomposition that
re� ects certain organizationalprocedures.

The attempt to preservedisciplinaryautonomyand reducesystem
complexitygivesbilevelmethods their intuitiveappeal.However, to
evaluate an approach to MDO one must answer a number of ques-
tions concerningthe resultingoptimizationproblem(s). For methods
basedon decompositionand disciplinaryautonomy,what mannerof
autonomy is actually afforded? What are the analytical and compu-
tational advantages and disadvantages attendant upon disciplinary
autonomy? Do the bene� ts that motivate the use of disciplinary au-
tonomy,such as easeof implementationor computationalef� ciency,
actually obtain in the resulting approach?

In this work we have examinedin detail the analyticaland compu-
tational featuresof a frequentlyproposedbilevel approach to MDO.
The analyticalfeatureshave a practical impact on the ability of non-
linear programming algorithms to solve the optimization problems
that result from this approach.The study has illustrated the distinc-
tion between the intrinsicgeometryof the feasibleset and the way in
which that set is represented in terms of constraints. Reformulated
problems can introduceanalytical features that cause dif� culties for
optimization algorithms.29;30

To illustrate the computational consequences of the analytical
features of CO, we have conducted numerous tests on problems
chosen for their simplicity to remove intrinsic dif� culties of the test
problems from the experiments.This means that the computational
conditions of the tests were more benign than what can be realisti-
cally expected in practice.We also used analyticalderivativesin the
disciplinary subproblems and either highly accurate or analytical
system sensitivitiesobtained from postoptimality sensitivity analy-
sis of the disciplinary solutions. The numerical tests substantiated
the analysis by revealing the following tendencies. Occasionally, a
felicitouscombinationof optimizationparametersand startingpoint
would enable us to solve the CO system problem, although at con-
siderablygreatercost than FIO or DAO. However, the solutioncould
not be accomplished reliably and ef� ciently. We observed that the
solution was most reliably achieved when all of the system iterates
were strictly nonrealizable (i.e., not realizable for all disciplines).

In summary, two characteristics of CO stand out. On the one
hand, the approach does afford the user increased disciplinary au-
tonomy. On the other, CO system problems are neither ef� ciently

nor robustly soluble using conventionalnonlinear programming al-
gorithms.There is particulartroubleat thepointsof interest,i.e., at or
near realizableor interdisciplinaryfeasiblepoints.Althoughone can
devise algorithmicapproachesthat avoid these points, one still must
be sure that the ultimate solution is realizable and hence physically
meaningful for all disciplines. In selecting a problem formulation
the user must weigh the relative importanceof these features for the
practical solution of the application problem in question.
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