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Analytical and Computational Aspects of Collaborative
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Analytical features of multidisciplinary optimization (MDO) problem formulations have significant practical
consequences for the ability of nonlinear programmingalgorithmsto solve the resulting computationaloptimization
problems reliably and efficiently. We explore this important but frequently overlooked fact using the notion of
disciplinary autonomy. Disciplinary autonomy is a desirable goal in formulating and solving MDO problems;
however, the resulting system optimization problems are frequently difficult to solve. We illustrate the implications
of MDO problem formulation for the tractability of the resulting design optimization problem by examining
a representative class of MDO problem formulations known as collaborative optimization. We also discuss an
alternative problem formulation, distributed analysis optimization, that yields a more tractable computational

optimization problem.
Nomenclature
A; = disciplinary analysis i
a; = outputof A;
¢; = interdisciplinaryconsistency constraints
D, = disciplinei
f = system objective function
gi = design constraints for D;
l; = design variableslocal to D;
min = minimize
s = design variables shared by disciplines
s.t. = subjectto

Introduction

HE analytical features of multidisciplinary optimization

(MDO) problem formulations have significant consequences
for the ability of nonlinear programming algorithms to solve the
resulting computational optimization problems reliably and effi-
ciently. This frequently overlooked fact is the theme of this and
related papers.' =

We illustrate the practical computationalimplications of problem
formulationusing collaborativeoptimization(CO).5‘8 COischarac-
terized by a distributed, bilevel structure, wherein a system problem
seeks to optimize system performance, whereas disciplinary prob-
lems attempt to minimize the interdisciplinaryinconsistency in the
variables and responses shared by the disciplines.

The ideas underlying CO are intuitively appealing and are based
onreasonablemotivations.Historicalevolutionof engineeringdisci-
plines and the complexity MDO suggest that disciplinary autonomy
is a desirable goal in formulating and solving MDO problems. Con-
sequently, is not surprising that bilevel approaches that maintain a
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measure of disciplinary autonomy have appeared and reappeared
in many forms over the past three decades. However, as we dis-
cuss, difficulties necessarily arise in solving the resulting computa-
tional optimization problems in theory and in practice. Difficulties
in solving problems with CO and related methods have been ob-
served by a number of researchers, including Thareja and Haftka,’
Cormier et al.,' Giesing and Barthelemy,!' and Kodiyalam.!”> We
point out that they derive from the intrinsic mathematical proper-
ties of CO. Our line of inquiry is constructive because it clarifies
practical computationalissues in MDO. The discussionis intended
for the engineeringaudience, althoughit contains some unavoidable
mathematical details required to explain what are ultimately issues
of a mathematical nature.

This line of analysishas immediate implications for a practitioner
of MDO in that it describes and explains the obstacles one is likely
to encounterin applying conventional optimization methods to dis-
tributed formulations. The obstacles can be overcome in one of two
ways. One may wish to pursue the development of new optimiza-
tion algorithms, specially suited to solving distributed optimiza-
tion problems. In the absence of suitable algorithms, our analysis
would indicate when and why one would instead pursue alterna-
tive problem formulations. We give one example of an alternative
class of formulations that possesses many of the attractive features
of distributed optimization approaches, while avoiding their com-
putational difficulties. We conjecture that an ideal MDO problem
formulation—one that manifests complete disciplinary autonomy
and leads to optimization problems that can be solved efficiently
and reliably—may not be possible. This observation emphasizes
the need for recognizing the tradeoffs among various features of
problem formulations and their computational consequences.

The analysis presented here supports a wider program we call the
algorithmic perspective on MDO problem synthesis. It takes as its
starting point the abilities—and inabilities—of optimization algo-
rithms and seeks to formulate MDO problems so that the resulting
optimization problems can be solved reliably and efficiently, re-
flecting the organizational and physical features of the application
to maximum extent without sacrificing solubility by available al-
gorithms. The study of the analytical and computational aspects of
MDO problem formulations is central to this program.

The algorithmic perspective stands in contrastto the conventional
approach to MDO we call the structural perspective, wherein the
primary considerations are the physical or organizational charac-
teristics of the system being designed. Concerns about the result-
ing optimization problem are secondary. Although successful for
many specific problems, the structural approach frequently leads



302 ALEXANDROV AND LEWIS

to what several engineering researchers have described to us as
one-of-a-kind problem solutions. That is, the choice of formulation
can give rise to computational problems that require great effort
in implementing and tuning the formulation and algorithms until a
satisfactory solution is attained. Even if the underlying ideas suf-
fer from serious deficiencies, highly customized approaches can
usually be made to yield results, with sufficient effort. However,
this means, in effect, developing a new, custom approach for each
application. Because successes of a particular method are reported,
whereas failures are usually not, the literature reflects a level of
systematic success and effectiveness that can be misleading.

In this paper we support our observations with analytical results,
illustrated by simple examples. The analysis is by no means ex-
haustive; we address only some of the analytical and computational
features of immediate practical import. Furthermore, a number of
interesting MDO problem formulations are not discussed here be-
cause we do not intend this paper as a survey. Instead, our intent
is to bring to light the practical impact of the analytical features of
MDO problem formulation on computational tractability of the re-
sulting design optimization problem. CO has been chosen because
it provides a particularly illuminating example.

Model Problem

For ease of exposition, we present our discussion for a two-
disciplinemodel problem. The disciplinesmightrepresentthe aeroe-
lastic interaction between aerodynamics D and structural analysis
D, for a wing in steady-state flow. The discussion is applicable to
MDO problems with an arbitrary number of disciplines, however.

Each disciplinary subsystem D; is based on a disciplinary anal-
ysis A; that takes as its input a set of design variables (s, /;) and
parameters derived from some or all of the outputs from the other
disciplinary analysis. The system design variables s are shared by
both disciplines. The disciplinarydesign variables/, and /, are local
to D, and D,, respectively. The outputs g; of each analysis include
all data passed to the other discipline as parameters as well as quan-
tities passed to design constraints and objectives. In our aeroelastic
example the information a,, passed from structures to aerodynam-
ics, would include the wing shape. The informationa,, passed from
aerodynamics to structures, would include the aerodynamic loads.
The parameters derived from the analysis outputs a;, j #i of the
other discipline are not directly manipulated by the designerin D;.

The coupled multidisciplinary analysis system (MDA) reflects
the physical requirement that a solution simultaneously satisfy A,
and A,. Given (s, [1, [,), we write the MDA as the system

a; = A(s, 11, ay) €8]
a, = Ay(s, L, ay) )

A, and A, are independentlysoluble: given (s, /;, a;), we can com-
pute the output a; via Eq. (1) or (2). The MDA thus implicitly
defines a; and a, as functions of (s, [;,1,): a,=a;(s,l;,[l,) and
a, = az(S, 11 N 12)

The disciplinary design constraints g (s, /1, a;) and g,(s, [, a,)
explicitly depend only on a single discipline’s output. No constraint
involvesa; and a, jointly. This assumptionsimplifies the exposition,
but is not essential.

A conventional approach to MDO problem formulation, com-
monly used in engineering design, is to impose an optimizer on the
MDA. Given the need to satisfy the MDA at a solution, this ap-
proach is natural. We call it the fully integrated optimization (FIO)
formulation and use it to give a canonical statement of the prob-
lem one wishes to solve. FIO is depicted in Fig. 1. Its mathematical
statement is

min  f[s, I, h,ai(s, 11, 1h,), ax(s, L, 15)]

5,01,
st gils,h,ai(s,11,)]1 =0
&ls, b, ax(s, 11, )] >0 3)

where the evaluationof the objectiveand constraintsrequiressolving
MDA (1) and (2) for the disciplinary analysis outputs a (s, /1, [)
and a, (s, [1, [,).

ﬂ—IDisciplinaLry analysis 1‘
a; a9 MDA

ﬂ—lDiseiplinary analysis 2|

5711712 ay, a2

min f(s,a,as)
s,01,02

s. t. gi(s,{1,a1) <0
Ga(8,l3,a2) <0

Fig.1 Fully integrated optimization.

Distributed Formulations

One of the main issues in MDO is problem synthesis, i.e., inte-
gration of the component disciplines into a tractable optimization
problem. One wishes to maintain the inherent disciplinary auton-
omy becauseorganizationaland computationalconsiderationsmake
itdesirableto keep the transfer of information among the disciplines
to a minimum. In practice, disciplinary autonomy can be attained in
the following ways:

1) Some distributed methods attempt to avoid the necessity of
developing a separate MDA capability. The feasibility of all opti-
mization iterates with respectto MDA (1) and (2) is the main benefit
of FIO: even if optimization cannot continue to a solution because
of limited resources, the intermediate designs will be physically
realizable. However, an MDA capability is not usually developed
at the same time as the constituent disciplinary analyses. Devel-
oping an MDA capability together with the ability to compute de-
sign sensitivities that depend on the MDA presents a laborious and
time-consuming task. This drawback of FIO strongly motivates the
development of distributed formulations under study here.

2) FIO leads to the presence of the complete set of local dis-
ciplinary design variables /; in the system problem (3). Some dis-
tributed formulationsuse subsystemoptimization problems to elim-
inate the local design variables from the system problem, thus hiding
the details of the subsystem design from the system problem.

Discrepancy functions'>!* suggest themselves as a device for en-
abling disciplinary autonomy by distributing a coupled problem as
autonomous subproblems. The idea is as follows. MDO problems
are inherently coupled, with feedback among the disciplinesin the
form of shared variables and responses. Solving a problem means
that a single set of shared variables and responses must satisfy the
disciplinary analyses and disciplinary design constraints simultane-
ously at solutions. Partitioning a problem into a set of subproblems
usually means that at intermediate solutions an inconsistency exists
between some or all of the shared variables and responses. This
inconsistency can be measured in many different ways as a scalar
function, with the actual form dependingon the quantity in question.
We call such scalar measures of inconsistencydiscrepancyfunctions
(DF). Formulations based on DF attempt to remove the interdisci-
plinary inconsistency at solutions, usually by requiring that the DF
bezero there. The resulting formulationslead to bilevel or multilevel
optimization problems.

Decomposition and information flow in such bilevel approaches
are intended to mirror those presentin engineeringorganizations. A
system coordination problem attempts to optimize the system ob-
jective. In the process of doing so, it issues design targets to the
component disciplines. In the subsystem problems the disciplines
must design to match these targets, i.e., try to reduce that disci-
pline’s DF to zero. This is one sense in which distributed bilevel
formulations can be viewed as respecting disciplinary autonomy.

DF-based formulations are also motivated by the wish to keep
the designs feasible with respect to the corresponding disciplinary
design constraints during optimization. This avoids problems with
designs that cause a breakdown of disciplinary analyses. However,
because the overall design does not, in general, satisfy the system
interdisciplinary consistency constraints, stopping in the middle of
optimization can yield a design that is not physically consistent.
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Approaches based on DF include optimization by linear decom-
position (OLD) or hierarchical decomposition.!*~!? CO is a related
approach; the underlying idea has a long history.!*!*19=2% In both
approaches local design variables are eliminated from the system
problem and manipulated directly only in disciplinary problems.
Furthermore, CO dispenses with an explicit MDA. In OLD the dis-
ciplines are given the autonomous task of minimizing disciplinary
design infeasibility while maintaining system consistency. The sys-
tem problem is to drive the design infeasibility to zero. In CO the
situation is reversed: the disciplines are given the autonomous task
of minimizing system inconsistency while maintaining disciplinary
design feasibility. In both approaches optimization of the system
objective, subject to interdisciplinary consistency, is performed in
the system problem.

Although bilevel approaches based on DF are intuitively appeal-
ing and reasonable, the resulting optimization problems are intrinsi-
cally difficult to solve by conventional optimization methods, as we
discuss presently. The observations on the differencesin computa-
tional behavior of two formulations of the same problem illustrate
the importance of considering practical algorithmic consequences
of choosing a specific MDO problem formulation.

Collaborative Optimization

To formulate problem (3) along the lines of CO, we introduce
new disciplinary design variables oy, 0. In the subsystem problems
they serve as local copies of the shared variables s, thus relaxing
the coupling through s. CO is a bilevel optimization approach in
which the system coordination problem attempts to optimize the
system objective subject to N interdisciplinary consistency con-
straints C ={c, ..., cy}:

min  f(s, t, 1), s.t.

S.t1,1

C(S7t17t2):0 (4)

Problem (4) controls the system design variables s and interdisci-
plinary coupling variables (¢, f,), which are issued as design targets
for the disciplinary inputs and outputs a; and a, to the constituent
disciplines. In the subsystem problems the disciplines must design
to match these targets as follows.In D, given (s, #,, £,), we compute
01(s, 11, ) and [, (s, t;, ;) as solutions of the following minimiza-
tion problem in (o7, [1):
min  4[lloy = sI? + lai (01, 1y, 1) = 1 117]

[

st. gilo, L, a(01,0,5)] 20 (5)

where a, is computed via the disciplinary analysis a; = A, (o,
Iy, ;). An analogous problem for D, defines solutions o, (s, t1, 1)
and [, (s, t1, ;) of the problem

min  $[lloy 51’ + llax(0. b 1)) = 1all’]
02,02

st &loa, 1, ax(05,,1)] 2 0 (6)

with a, computed via a, = A, (03, [, ;).

The objectives in the subsystem problems are discrepancy func-
tions. The introduction of subsystem problems of the forms (5) and
(6) is a distinctive characteristicof CO. The problems can be solved
autonomously. In solving them, we eliminate /; from the system
problem and decouple the calculation of the disciplinary analysis
outputs a;. Information from the solutions of problems (5) and (6)
is then used to define the system consistency constraints ¢;.

In one instance of CO,>%82 the consistency condition drives to
zero the minimum value of the DF in problems (5) and (6). Atthe sys-
tem level the interdisciplinary consistency constraints C = (¢, ¢;)
are simply the optimal values of the objectives in problems (5)
and (6):

ci(s, 1, 1)) = %{H&I(S»tI»tZ) —s|?
+llaloi(s, 1y, 1), Li(s, ti, 1), ] — 1 ||2}

_ 1z 2

c(s, 1y, 1) = 5{“02(5,[1,[2) = sl

+“aZ[&Z(S»tl»tZ)al_Z(S»tl»tZ)tl]_t2||2} @)

where the bars over oy, 07, [, [, indicate that these values are the re-
sults of solving the subsystem problems for the given value of the
system variables. We call this version CO,, where 2 refers to the
fact that the ¢; are sums of squares.

An alternative consistency condition gives rise to a second in-
stanceof CO (denoted CO, ), where the system variablesare matched
directly with their subsystemcounterpartscomputed in problems (5)
and (6). The consistency constraints C = (cy, ..., ¢,;) are

ci(s, 11, 1) = 01(s, 1, 1) — 5

ex(s,t, ) = ar[G1(s, t, 1), i (s, 1, ), ] — 1

c3(s, i, b)) = 0a(s, b, 1) —§

ca(s, i, 1) = ax[Ga(s, 1, 1), L(s, t, ), ] — b ®)

Note that (¢, ¢,) are associated with D, and (c3, ¢4) are associated
with D,.

In either approach a value of the system variables (s, #|, f;) is
realizable for D; if the optimal value of the DF in the corresponding
disciplinary subsystem problem (5) or (6) is zero. Realizable values
of s, t1, 1, correspondto desirabledesigns: D; can exactly match the
system targets without violating the disciplinary design constraints.
In general, there are many realizable values of the system variables
for a given discipline. A point (s, #, t,) is feasible for the system
problem when it is realizable for all of the constituentdisciplines.

Examples of Reformulation

Two examples illustrate the analysis of CO.? The simplicity is
a conscious choice. When complex problems are used as the only
test of methodologys, it is difficult to distinguish the behavior caused
by the intrinsic properties of the method from those features caused
by the various aspects of the problem and implementation. Sim-
ple examples allow us to isolate the intrinsic properties of problem
formulations. Moreover, simple problems provide a lower bound
on the reliability of a solution technique: although it is clear that
MDO methods are not intended for very small and simple problems,
any practical optimization approach should be able to solve such
problems reliably. Experience with CO applied to more complex
problems is reported elsewhere 2+10:12:25

Examples (9) and (10) are trivially solved by conventional op-
timization methods. This feature removes the issue of the prob-
lem implementationcomplexity and isolates the intrinsic properties
of problem formulations under consideration here, as well as their
algorithmic consequences.

Our first example is exceedingly simple:

min  f(s) = s, st. 0<s<1 9)

Our second example has a convex quadratic objective and linear
constraints:
min  1[a2(l,, 1) + 1043, 1)

2

s.it. s+ <1
—s+15L <=2 (10)

where (a;, ay) solves 2a, +a, =1, and a; + 2a, =1,.

To reformulate problem (9) along the lines of CO, we create two
“disciplines”associated with the constraintss > 0 and s < 1, viewed
as two disciplinary design constraints. Given s, the subsystem prob-
lems are

min 3oy — s, min 3oy — s?
02

st. 07=>0 st. o, <1 (11

The solutions, as functions of s, are

0 if s=<0,

B _ s if s<1
01(3)={S if s3>0 "2(”:{1 if s>1 (12)
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The CO, system problem is then

min S
s

st.c(s) =1l61(s) —s]> =0
e (s) = 3l62(5) = 51> =0 (13)
whereas the CO, system problem is

min s
s

s.t. ¢ (s)=0,(8)—s=0
c(s) =02(5)—s =0 (14)
Reformulating problem (10) along the lines of CO, we obtain the
system-level problem

min %(tl2 + 10 tzz), s.t.

s.t,0

C(s,1,,1,) =0

which becomes CO, if C =(cy, ¢;) is defined as in Egs. (7) and
CO, if C=(cy,...,cyq) is defined as in Eqgs. (8). Given (s, t;, 1,),
the constrained optimal values o, (s, t;, t,) and [, (s, t;, t,) are com-
puted by solving problem (5) for D, with the disciplinary constraint
oy +1; < 1, where a; solves the disciplinary analysis 2a, +t, =1,.
Similarly, for D, we compute 0,(s, t;, ;) and I, (s, t;, t;) via prob-
lem (6) with the constraint —o, + [, < —2, where a, solves the dis-
ciplinary analysis #; +2a, =[,. The subsystem problem solutions
are

G1(s, 11, ) = s + +min[(—s — 2, — 1, + 1), 0]
li(s,t1, ) = 2t + 1, + 2 min[(—s — 21, — 1, + 1), 0]
5’2(5,[1, tz) =95+ %max[(—s +t1 +2t2 +2), 0]

bL(s,t, ) =ty + 26 — Tmax[(=s + 1, + 26, +2),0]  (15)

Analytical Features of CO

In this section we discuss and illustrate some of the more pro-
nounced analytical features of CO and their computational con-
sequences. A more detailed discussion can be found elsewhere
We believe that the analysis explains many of the reported com-
putational difficulties.”*1>?> The features we discuss make it harder
for conventional algorithms to solve the CO system problem and
also degrade the efficiency with which the problems will be solved.
Moreover, bad things happen at good points: the difficulties nec-
essarily arise at values of the system variables that are realizable
for individual disciplines and, more specifically, designs and dis-
ciplinary inputs and outputs that correspond to a consistent MDA.
This is an unavoidable consequence of the way CO eliminates /;
from the system problem.

Breakdown of the Stationarity Conditions in CO)

The system problemin CO, fails to satisfy the standard Karush-
Kuhn-Tucker (KKT) stationarity conditions for a constrained min-
imizer because, in general, Lagrange multipliers do not exist for the
system problem. Example (9) illustrates this property. The gradients
of the system consistency constraints are

<0, 0
Ve(s) = {Ev) if sz0  Ve®s= {s

The minimizer of the system problem (13) is s,=0, and
Ve, (s,) = Vey(s,) =0.The KKT conditionsfor problem (13) would
require the existence of Lagrange multipliers A}, A} such that

V() +A1Vei(se) +A5Ver(s,) =0
However, we have
Vf(s*) + )\TVC‘] (s4) + )\;VCZ(S*) = Vf(s*) =1

In general, the KKT necessary conditionfor a point x,, to be a (local)
minimizer of a generic equality constrained optimization problem
{min, f (x)|C(x) =0} is that C(x,) =0 and there exists a vector of

Lagrange multipliers A, for which V f(x,) + VC (x,)A, =0. If x,
is feasible and VC(x,) =0, then the KKT stationarity condition
holds if and only if V f(x,) =0. Thus, if the constraint Jacobian
vanishes at x,, the Lagrange multiplierrule will not hold at x,,, unless
X, is also an unconstrainedstationarypoint: V f(x,) = 0. In general,
this is not the case.

Unfortunately,this situationnecessarily arises in the system prob-
lem of CO,. The system constraints are differentiable at system
feasible points; however, at values of the system variables that
are realizable for a given discipline the gradient of the CO, sys-
tem constraints associated with that discipline vanishes. That is, if
ci(s,t,1,) =0then V¢ (s, t;, 1,) =0. This means that the Jacobian
of the system constraints will drop rank whenever the system vari-
ables become realizable for one or more of the disciplines,which can
cause numerical algorithms to fail at realizable values of the system
variables. Another consequence is that the Jacobian of the system
equality constraints in CO, vanishes at every feasible point of the
system problem. This, in turn, implies that Lagrange multipliers do
not exist, in general, for the system problem in CO,.

The nonexistence of Lagrange multipliers manifests itself in a
number of practical difficulties. For instance, solutions to the sys-
tem problem exist, but we cannot identify them, and this inability
to characterize solutions numerically via the KKT conditions has
unfortunate consequences for computation. Assumptions about the
validity of the KKT conditions underlie the ways in which optimiza-
tion algorithms compute steps, gauge progress, and make decisions
about termination, among other things. One practical feature is that
one could begin an optimizationalgorithm at or near a solution, but,
because the KKT conditions do not hold, the algorithm will move
away from the solution, leaving the feasible region, and return to it
only later.

A related feature is that algorithms that use augmented
Lagrangians or similar merit functions to decide whether to accept
an iterate can break down because, e.g., the penalty weights in the
problem merit function grow without bound.

Moreover, because the KKT conditions do not hold at solutions
of the system optimization problem, we have no way to gauge
the progress of a conventional optimization algorithm applied to
the system problem. Once the optimization algorithm terminates,
we cannot, say, look at the gradient of the Lagrangian to determine
whether we are close to a minimizer.

The breakdown of the KKT conditions in the system problem
is an inherent feature of CO,. The difficulty is not caused by the
intrinsic geometry of the system or disciplinary feasible regions.
Rather, it lies in the representationof the feasible region in terms of
system constraints in CO,. The vanishing of the Jacobian has been
observed previously,’ but its consequences appear not to have been
fully appreciated.

Simple tests illustrate how the breakdown of the KKT con-
ditions in CO, can impede and even thwart computational opti-
mization. Table 1 presents the behavior of a Sequential Quadratic
Programming (SQP) algorithm, the NPSOL® package. (The use of

Table1 Iteration history of NPSOL applied to the CO, system
problem for problem (9) with s¢ =0.001 (columns 2, 3)
and sg =— 0.001 (columns 4, 5)

Iteration s Penalty s Penalty
0 1.000e—03  0.0e+00  —1.000e—03  0.0e+00
1 —-9.990e—-01  4.2¢4+00  —1.000e—00  1.0e+00
2 —9.847¢—01 5.7e+00  —9.857¢—01 1.4e+00
3 —8.282¢—01 7.4e+00  —8.290e—01 1.9¢+00
4 —4.142¢—01 2.7e4+-01 —4.145¢—01  6.9¢+00
5 —3.430e—01 5.9¢+01 —3.432¢—01 1.5e+01
6 —1.718—-01  4.0e+02  —1.716e—01 1.0e+02
7 —1.436e—01 8.2e+02  —1.434e—01  2.1e+02
8 —7.251e—02  5.4e+03  —7.170e—02  1.4e+03
9 —6.076e—02 1.1e404  —5.992¢—02  2.8¢4-03
10 —3.203¢—02  6.5¢+04  —2.996e—02  1.9¢+04
11 —2.717e—02 1.2e+05  —2.503¢—02  3.9¢+404
12 —1.727¢—-02  5.1e+05  —1.252¢—02  2.6e+05
13 —1.442¢—02 1.9¢4+06  —1.046e—02  5.3¢4-05
14 —1.414¢—02  4.7¢4+06  —5.230e—03  3.5¢+06
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names of commercial softwarein this paperis for accurate reporting
and does not constitute an official endorsement, either expressed or
implied, of such products by NASA or ICASE.)

The solutionis s, = 0. The initial guesses are s, = 0.001, which is
close to s, and also feasible with respect to the system constraints,
and s, = —0.001, which is also near s, but slightly infeasible.

When we start at s, = 0.001, because the system constraints van-
ish in the interior of the feasible region 0 <s <1, the problem ap-
pears to be unconstrained at sy, and so we immediately take a large
step that producess; violating the design constraints. We then spend
the remainder of the iterations working our way back towards fea-
sibility.

Note the column labeled “Penalty.” It holds the penalty weights
in the augmented Lagrangian used by NPSOL as a merit function
to gauge progress. The large values of the penalty weight reflect
the nonexistence of Lagrange multipliers for the system problem;
the algorithm is compensating for the system constraint Jacobian
vanishingby increasing the penalty parameter (in principle, without
bound as it approaches the solution).

The behavior of NPSOL is even more striking for the CO,
formulation of problem (10). The solution to the strictly con-
vex original problem is unique. From some starting points [e.g.,
(s, 1, )= (1,1, 1)] NPSOL applied to the CO, system problem
finds the optimal solution:

t, = —0.0303

s = 1.6363, f, = —0.3030,

01(5,11,1) = 0y(5, 11, 1) =

Li(s,t, 1) = —0.6363,  L(s,1,1,) = —0.3636

a (s, t, ) =1, a(s, 1, 1) =1 (16)
with the associated optimal value function of 5.05 x 1072, although
at a considerably greater computational cost (several hundred disci-
plinary analyses) than that of the solution of FIO. (In the CO; tests
described, we compute system sensitivitiesvia postoptimality sensi-
tivity analysisof solutionsof the disciplinary problems, as one might
in practical application of CO,, while the sensitivities used inside
the disciplinary subproblems are computed analytically.) None of
the iterates generated in the system problem are realizable for either
discipline. This nonrealizability is actually the favorable situation
from the perspectiveof applyinga numerical optimizationalgorithm
to the CO, system problem. However, intermediate designs do not
satisfy the physical constraints.

The worst behavior is observed when starting from values of
the system variables that are feasible with respect to the system
constraints (which is at odds with what one would hope for). For
instance,if we startat (s, t1, t,) = (—3, —3, —3) NPSOL terminates
after a few system iterations (and a cost of over 200 analyses for
each discipline) at

s = —2.806, t = —5.658, 1, =0.301 17)
with the associated objective value of 16.46. The final system vari-
ables (and all intermediate iterates) satisfy the system consistency
constraints, which is the adverse situation in CO because the com-
puted Jacobiansat this point are singular, and this causes NPSOL to
fail. The singularityis reflected in the final estimate of —1.67 x 10'°
for the Lagrange multiplierassociated with the system constraintc; .

Starting much closer to the solution, but still feasible with re-
spect to the system constraints, we may fail to converge to the solu-
tion, e.g., when started from (s, 1, t,) = (1.63, —0.3333, —0.0333),
NPSOL halts, unable to make further progress, at a feasible value
of the system variables with an objective of 6.10 x 102, over 20%
greater than the optimal value and only a slight improvement on an
initial objective value of 6.11 x 1072,

As already noted, because the KKT conditions do not hold at
solutionsof the system problem we cannotreliably use conventional
metrics to determine whether putative answers are nearly stationary
and thus close to a solution. For instance, if we start with the system
values (s, 1, 1) = (1.63, —0.302, —0.302) we terminate at a point
that appears to NPSOL to be a KKT point: It is feasible, and the

projection of the objective gradient onto the linearization of the
active constraints is small in magnitude. However, the Jacobian is
nearly zero, and so small errors in computingthe system sensitivities
make the Jacobian mostly noise and the projection is meaningless.

The examples illustrate a transformation of simple, smooth, con-
vex optimization problems with small numbers of variables into
problems that are difficult to solve. Moreover, the analytical rea-
sons for the computational difficulties are inherent in the transfor-
mation, and so they will not disappear for problems of greater size
or complexity.

Breakdown of the Stationarity Conditions in COj

CO, is motivated by the need to alleviate the performance diffi-
culties of CO,,’ but its use presents its own difficulties. In partic-
ular, the derivatives of the CO; system constraints associated with
a given discipline are necessarily discontinuous at the boundary of
the feasible region for that discipline.

For instance, the system constraints for (9) are

0 if
ls) = {l—s s

both of which have discontinuousderivatives: the first at s = 0, and
the second at s = 1. These points correspond to the boundaries of
the disciplinary feasible regions {s | s > 0} and {s | s < 1}.

A similarlack of differentiabilitycan be seen in the reformulation
of problem (10). The solutions of the disciplinary subproblems are
given in Eqgs. (15); the presence of the min and max terms makes
these solutions nondifferentiable at values of the system variables
along the boundary of the realizable sets for each discipline.

The discontinuityof the system derivativesis a general feature of
CO, and is not peculiar to examples (9) and (10). Each subsystem
problem (5) and (6) minimizes the distance from the disciplinary
feasibleregionto the target values of the system designand coupling
variables. For target values of the system variablescorrespondingto
designsat the boundaryof a disciplinaryfeasibleregion, the solution
of the corresponding disciplinary optimization problem undergoes
anabruptand nondifferentiablechange. Moreover, this discontinuity
of the derivatives will, in general, occur at the solution to the system
problem because at least one disciplinary design constraint will be
bindingat the solution,in general. Thatis, we can expect the solution
of the system problem to be on the boundary of one (or more) of the
feasibleregions for the individual disciplines,and at such points the
CO; constraints have discontinuous derivatives.

Example (10) demonstrates this effect. NPSOL finds the
solution in four to five iterations, regardless of the starting
point. NPSOL applied to the CO; reformulation, on the other
hand, behaves erratically. If we start from the initial point
(s, 1, 1) =(1.63, —0.302, —0.0302), whichis close to the exact so-
lution, (1.63, —0.30, —0.03), NPSOL finds the solution at a cost of
about 50 disciplinary optimization problems for each discipline. If
we start at the point (s, #;, 1) = (—1, —1, —1), NPSOL terminates,
unable to make further progress, at

1
1

IV IA

_)=s if s=<0,
Aa®)=910 if 5>0

s = —0.9969, 1, = —1.4640, t, = —0.0689

o1(s,t1, ) = 0a(s, 1, 1) =

I,(s, 1), 1) = —1.6018, L(s, 1), t) = —2.9969

a(s,t;, ) =1, ay(s, 1, ) =1
This design satisfies the system constraintsbut has an associated ob-
jective value of 1.096. (The optimal objective value is 5.05 x 1072.)
The associated disciplinary design variables for D, also lie on the
boundary of the disciplinary feasible region (because s + I, = — 2),
and so we encounter the discontinuity in the constraint Jacobian.
Examination of the finite difference estimate of the Jacobian com-
puted by NPSOL at this point reveals that the Jacobian is highly
inaccurate.

Starting from (s, #{, ;) = (0, 0, 0), NPSOL approaches but does
not succeed in finding the correct answer of the original problem.
We terminated this run after 500 system iterations with an objective
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thatwas 2.7 times greater than the optimal value, at a cost of solving
over 3000 disciplinary optimization problems for each discipline.

Additional Nonsmoothness

When the set of disciplinary design constraints binding at the
solution of the subsystem problems (5) and (6) changes as a function
of the system targets (s, t;, #,), there may be a discontinuity in the
derivative of the system constraints for both CO; and CO,. This
difficulty is a well-known phenomenonthat arises in the dependence
of solutions of optimization problems on parameters and has been
noted in connection with bilevel approaches to MDO.>162728 The
discontinuity of the constraintJacobianin CO; is one manifestation
of this phenomenon, in fact.

There is also potential for multiple local solutions of the sub-
system problems (5) and (6). The computed solutions may fail to
depend continuously on the system targets (s, 1, #,), and it is not
clear how to ensure that one computes only a continuous branch of
local minimizers to the subsystem problems.

We do notillustratethese two difficulties with examples. They are
widely known and may or may not occur,dependingon the particular
problem and the solution algorithms. The characteristics described
in the preceding sections, on the other hand, are intrinsic to CO and
may occur even if the original problem is perfectly well-behaved.

Overdetermined System-Level Constraints

In a typical equality constrained minimization problem there are
fewer equality constraints than optimization variables, i.e., the de-
grees of freedomin searching for a problem solution outnumber the
binding constraints. Both CO; and CO, can lead to system prob-
lems thathave more equality constraintsthan optimizationvariables,
with CO, typically leading to more constraints than does CO,. Ex-
ample (9) illustrates this: the system problem has a single variable
but two equality constraints.

Although the system equality constraints are consistent inso-
far as they are satisfied at any multidisciplinary consistent design
(s, 11, 1), away from the solutionthe overdeterminedconstraintscan
cause trouble for standard optimization algorithms. For instance, in
SQP the system constraints are linearized. Because there may be
many more constraints than unknowns, the resulting linear system
can appear to be overdeterminedand without solution, leading to an
infeasible SQP subproblem. This, in turn, can lead the optimization
algorithmto wrongly conclude that the system problemis infeasible
and to terminate withouthaving found a solution. We have observed
this behavior in practice.

In CO, one can try to avoid this problem by summing the con-
straints from different disciplines into a single nonlinear equality
constraint. In CO, this remedy does not apply.

Increased Nonlinearity of the Transformed Problem

CO transforms originally smooth problems into nonsmooth ones
with a higher degree of nonlinearity. For example, the original prob-
lem (9) is linear, whereas the resulting CO system and subsys-
tem problems are nonlinear. In CO, the system problem involves
piecewise quadratic constraints, whereas in CO; the system con-
straints are not continuously differentiable. The increased nonlin-
earity arises from the elimination of the local, disciplinary design
variables via the disciplinary optimization subproblems.

As a general rule in nonlinear programming, it is important not
to increase nonlinearity or introduce other structural complications
when transforming problems 2%-*° For instance, practical optimiza-
tion algorithms are often based on successive linearizations. Lin-
earization is exact for linear problems, which allows algorithms to
take advantage of this special structure. The CO reformulation does
not preserve linearity in the system constraints. The practical dif-
ficulty of solving increasingly nonlinear system problems in CO is
noted in computational experiments.'

Addressing Computational Difficulties

As we have seen, the nature of CO can make it difficult for numer-
ical optimizationalgorithms to arrive at realizable, interdisciplinary
consistentdesigns. We can attempt to address the difficulties via one
of several relaxations. All relaxations, in effect, are accomplished
by staying away from realizable designs.

Table2 Results of relaxing the CO; constraints
for problem (10), starting at (— 3, — 3, — 3) (columns 2, 3)
and (1,1, 1) (columns 4, 5)

& fe KKT? fe KKT?
107! 4.75 No 1.62x 10~ Yes
1072 4.79 No 6.82x 1073 Yes
1073 4.79 No 3.23x 1072 Yes
1074 4.79 No 4.43 x 1072 Yes
1073 4.79 No 4.85x 1072 Yes
10-¢ 4.79 No 4.99 x 1072 Yes

2The final objective is f,. “KKT?” indicates whether the computed solution
is a KKT point for the relaxed problem.

Relaxation of System-Level Constraints

One relaxationis to treat the system interdisciplinaryconsistency
constraints as inequalities rather than strict equalities.!%!? Toler-
ances on those inequalities should be as loose as possible to pre-
vent breakdown of numerical optimization algorithms. At the same
time one must continue to impose as tight a tolerance as possible
on the convergence of the subsystem problems so that the system
constraints and their sensitivities are properly evaluated.

This approach has limitations. If the system equality constraints
are not satisfied, the system variables correspond to a design that is
not physically consistent (because the multidisciplinary analysis re-
lations are not satisfied) and that also violates the design constraints
of one or more disciplines.

Furthermore, this relaxationis not guaranteed to relieve the com-
putational difficulties or to lead to designs that are nearly optimal.
This is illustrated by the CO, formulation of problem (10). We relax
the system constraints to be

ci(s, 1, ) <e, (s, t, ) <&
for ¢ > 0. The relaxed system problem is strictly convex and has a
unique minimizer.

First suppose we begin at (s, t;, ;) = (—3, —3, —3), which led
to the false solution (17). The results for different values of ¢ are
reported in the second and third columns of Table 2. In all cases
NPSOL fails to find a legitimate solution for the relaxed system
problem, even though the relaxed programis convex. The algorithm
isundoneby the singularity of the constraintJacobianat feasibleand
realizable values of the system variables (i.e., rows of the Jacobian
vanish and/or become linearly dependent).

On the other hand, if we repeat the same experiment starting
at (s, t, )= (1,1, 1), which allowed us to find the correct solu-
tion (16), we encounter another issue. The results are summarized
in the fourth and fifth columns of Table 2. This time the relaxed con-
straints allow NPSOL to find objective values that are significantly
better than the true value, 5.05 x 1072,

Whether such deviations are acceptablein a realistic problem de-
pendson the application.If the objectivefunctionis a physical value,
such as range of an aircraft, the deviation can be significant. By re-
laxing the system consistency tolerances, we are now sometimes
able to solve the wrong problem more easily.

As this example makes clear, relaxing the system constraintsdoes
not necessarily repair CO, and can introduce another difficulty. It
is not clear that there is an ideal relaxed tolerance for the system
constraintsthat allows one to solve the problem while not distorting
the solution to unacceptablelevels. Furthermore, one would expect
this sensitivity to relaxationto be greaterin more complex problems,
as computationaltests demonstrate.'” In general,one cannotknow, a
priori, the effect of such relaxationson the optimal solution because
suchknowledge would require a perturbationanalysis at the optimal
solution.

In our simple tests we varied the tolerances parametrically. In
practical engineering problems users may have a physics-based or
an engineering-based idea of acceptable variations in the design
variables, objectives, or constraints. For example, variationsof 1 kg
may be acceptablein the grossliftoff weightfor an aircraft. However,
in order to translate an acceptable variation in a physical quantity
to an acceptabletolerance for infeasibility of the system constraints
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one would need an estimate of the associated Lagrange multipliers
at an optimal solution, which is not available a priori.

Relaxation via Response Surface Methodology

Response surface methodology (RSM) has been proposed as
another approach to relaxing CO.>'~* In one technique the
disciplinary analyses serve to build response surfaces that replace
the analyses as function evaluators in the subproblems. This is a
conventional use of RSM, and it does not alleviate the analytical
difficulties of CO: the optimization problem structure remains un-
changed (although the additional uncertainty of the quality of RSM
approximation now contributes to the formulation).

The second approach uses RSM to build response surfaces that
approximate the DF. A detailed analysis of this approach would de-
pend both on the problem and on the specific type of data fitting
surfaces used. As we are dealing with the fundamental CO formu-
lation in this paper, such an analysis is not in its scope. However,
the conceptual difficulty of the approach can be summarized as fol-
lows. Althoughresponse surfaces do ease the solution of the system
problem by virtue of distancing the problem from the original CO
formulation, it then becomes difficult to say what problem we are
actually solving. In CO the use of response surfaces is mainly aimed
atavoidingdifficulties with CO, not difficulties with the MDO prob-
lem itself.

Alternative Optimization Algorithms

In this work we have relied on SQP algorithms as the means of
solvingthe CO system problem because SQP methods are generally
the most efficient for equality constrained optimization. As we have
shown, CO has analytical features that hinder the successful opera-
tion of SQP algorithms. In particular, the singularity of the system
constraintJacobiancauses difficulty for SQP algorithms. Moreover,
projectioninto the null space of the system constraint Jacobians, on
which SQP methods rely, is untenable and causes erratic computa-
tional behavior.

Tharejaand Haftka® appliedboth a feasibledirectionand a penalty
function algorithm to a version of CO,. They also found that the
designs at which their algorithms terminated were highly variable
and very sensitive to the choice of parameters in the optimization
algorithms. For the very simple problems presented here quadratic
penalty methods applied to the CO system problem yield reasonably
reliable, but not efficient, solutions.

Alternative: Distributed Analysis

We can formulate the MDO problem in a way that respects the
requirements of conventional nonlinear programming analysis and
algorithms and avoids the analytical difficulties of the bilevel ap-
proacheswe have discussed. We call this approachDistributed Anal-
ysis Optimization (DAQ). Instances of this class of formulations
have appeared previously.3*~3°

DAO treats the implicit interdisciplinary consistency constraints
in the MDA as explicitequality constraintsin the optimization prob-
lem. FIO becomes

min f(s, 1, 8)
st 0

s.t. gi(s,l;,1) =0, h=a(s,li,n)

8(s,5,, ) 20, L =ax(s, [, 1)
where a;(s,l;,)=A(s,l;,t,), and a(s,l,, 1)) = A,(s, 5, t;).
DAO enjoys a measure of disciplinary autonomy in that the dis-
ciplinary analyses can be performed independently. Details may be
elsewhere 34

The DAO formulation has the same smoothness and stability
properties as FIO. There is no difficulty with Lagrange multipliers
or nonsmoothness. Because the analytical properties of DAO are
the same as those of FIO, performance of optimization algorithms
applied to DAO will not suffer as a consequence of reformulation.

A tradeoff in DAO and CO is in the treatment of local design
variables. The DAO system problem operates on the entire set of
design variables, while the local variables are absent from the CO

system problem. To address this limitation in DAO, one needs to
take advantage of the block structureinduced by the disciplines.On
the other hand, the same computationalelements (e.g., disciplinary
analyses and sensitivities) are needed to implement FIO, DAO,
and CO.

Lessons Learned

We have shown that CO gives rise to nonlinear programming
problems that are difficult to solve by conventional optimization
algorithms. The difficulty is caused not by intrinsic propertiesof the
original MDO problem, but rather by the bilevel representation in
CO. As computationalexperiencesuggests,'®!? if a CO formulation
can be solved at all it is unlikely that it will be solved quickly.
Depending on the application, the lack of efficiency may figure
in selecting a problem formulation. Requirements for inclusion of
expensive, high-fidelity analyses can preclude the use of CO in a
practical environment."! We comment on additional considerations
that should assist a user in choosing a problem formulation.

Robustness

The conceptofrobustnessin nonlinear programming has two ma-
jor components. First, it denotes the ability of an algorithm to find
an answer, starting from an arbitrary initial point. Second, a robust
algorithm ensures that the answer found is correct and, if not, termi-
nates with an informative message. The second feature is, arguably,
by far the more important of the two, and it relies on the availability
of tractable stationarity conditions. CO formulations are not well-
posed from the perspective of conventionalnonlinear programming
because the system problems do not satisfy the standard optimality
conditions.

An algorithm applied to the system problem in CO cannot be
expectedto exhibitrobustbehavior. Our analysis and examples show
that CO, when started at or near solutions, will generally leave the
region of feasible designs. The lack of a verifiable stopping criterion
for CO also explains the tendency of NLP software to halt at points
that are not solutions because progress cannot be made. To provide
a reliable stopping criterion in terms of FIO, one would have to
implement FIO, which would defeat the purpose of implementing
CO in the first place. The same reasoning also prevents uses of a
hybrid approach, e.g., CO combined with FIO.

We have also shown that attempts to relax CO may not alleviate
the computational difficulties. Relaxation may not make it possible
to find the solutionreliably and can also lead to answers that appear
significantly better than the correct solution but violate the physical
consistency of the MDA and violate disciplinary constraints.

These features add up to the most serious drawback of CO—the
lack of robustness in using conventional nonlinear programming
algorithms. Again, thisis caused by the nature of the system problem
in CO, not by the nature of the original physical problem nor by
deficiencies of standard optimization algorithms.

The use of quadratic penalty methods can be more robust (it was
for the very simple problems presented here) but not efficient.

Dimensionality of the System Problem

Because the local design variables are eliminated from the system
problem in CO, both the system and the subsystem problems have
a reduced number of variables, compared to the total set of design
variables. However, this reduction is achieved at the price of system
problems that are difficult to solve.

Ease of Implementation and Execution

When a problem formulation requires an MDA capability, the
effortis expendednotjustin implementingthe MDA, butalso during
the execution of MDA because the processing of the disciplinary
inputs may require extensive human intervention. CO is claimed
to ease problem implementation and execution because an explicit
MDA capability is not required. We believe this claim has not been
proven satisfactorily as yet.

On the positive side, local disciplinary variables need not be
treated as optimization variables at the system level. On the other
hand, although MDA is notimplemented in CO the flow of informa-
tion among the disciplines still remains. That is, in our example of
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aerostructuralinteraction structures still require input from aerody-
namics, and conversely. This dataexchange occupiesa large portion
of the implementationeffort (regardless of the problem formulation)
and adds to the execution effort. Because, typically, CO, would re-
quire many iterations to attain some level of convergence, human
intervention to handle interdisciplinaryinputs can be significant.

Moreover, because of the delinquentnature of the system problem
in CO much time can be expended on fine tuning both the problem
formulation and the optimization algorithm to produce answers.!°
For small test problems we found that implementing CO was more
laboriousthanimplementing FIO or DAO; however, small problems
do not provide a fair test of the necessary implementation effort.
Observations on the effort required to implement CO for more real-
istic problems can be found elsewhere.'® This points to the need for
careful measurementof labor expended on various parts of the prob-
lem implementationin MDO: the modeling, the problem statement,
the optimization. Moreover, careful comparison must be made with
the corresponding time expenditures when using, say, the standard
formulation. Until such accounting is done on a realistic problem,
substantiating claims on the increased ease of implementation will
be difficult.

Conclusions

Bilevel approaches suggest themselves naturally as a decompo-
sition strategy for large problems, and researchers have repeatedly
turnedto themin an attemptto deal withengineeringsystemsin a de-
centralized fashion. Although computationalefficiency is one of the
goals of bilevel approachesto the optimization of complex, coupled
systems, the computationalinefficiency that often resultsin practice
is viewed, first, as a feature that will be ameliorated by increases in
available computing power and, second, as less significant than the
conjectured benefits, such as ease of problem synthesis and imple-
mentation, disciplinary autonomy, or a problem decomposition that
reflects certain organizational procedures.

The attemptto preservedisciplinaryautonomy and reduce system
complexity gives bilevel methods their intuitive appeal. However, to
evaluate an approach to MDO one must answer a number of ques-
tions concerningthe resulting optimization problem(s). For methods
based on decompositionand disciplinaryautonomy, what manner of
autonomy is actually afforded? What are the analytical and compu-
tational advantages and disadvantages attendant upon disciplinary
autonomy ? Do the benefits that motivate the use of disciplinary au-
tonomy, such as ease of implementationor computationalefficiency,
actually obtain in the resulting approach?

In this work we have examinedin detail the analyticaland compu-
tational features of a frequently proposed bilevel approach to MDO.
The analyticalfeatures have a practical impact on the ability of non-
linear programming algorithms to solve the optimization problems
that result from this approach. The study has illustrated the distinc-
tion between the intrinsic geometry of the feasible set and the way in
which that set is represented in terms of constraints. Reformulated
problems can introduce analytical features that cause difficulties for
optimization algorithms 23

To illustrate the computational consequences of the analytical
features of CO, we have conducted numerous tests on problems
chosen for their simplicity to remove intrinsic difficulties of the test
problems from the experiments. This means that the computational
conditions of the tests were more benign than what can be realisti-
cally expectedin practice. We also used analytical derivativesin the
disciplinary subproblems and either highly accurate or analytical
system sensitivities obtained from postoptimality sensitivity analy-
sis of the disciplinary solutions. The numerical tests substantiated
the analysis by revealing the following tendencies. Occasionally, a
felicitouscombinationof optimization parameters and starting point
would enable us to solve the CO system problem, although at con-
siderably greatercost than FIO or DAO. However, the solution could
not be accomplished reliably and efficiently. We observed that the
solution was most reliably achieved when all of the system iterates
were strictly nonrealizable (i.e., not realizable for all disciplines).

In summary, two characteristics of CO stand out. On the one
hand, the approach does afford the user increased disciplinary au-
tonomy. On the other, CO system problems are neither efficiently

nor robustly soluble using conventional nonlinear programming al-
gorithms. Thereis particulartroubleat the points of interest,i.e., at or
nearrealizableorinterdisciplinaryfeasible points. Although one can
devise algorithmic approachesthat avoid these points, one still must
be sure that the ultimate solution is realizable and hence physically
meaningful for all disciplines. In selecting a problem formulation
the user must weigh the relative importance of these features for the
practical solution of the application problem in question.
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